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INTEGRATING DATA SETS TO IMPROVE INTERFACE SAMPLING

Su4: 02/20/2008 Mw7.4 Nias Island Earthquake

Per: 08/15/2007 Mw8.0 Peru Earthquake
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provides a quick analysis of the tectonic setting of an earthquake and a 'most likely' depth assuming the earthquake occurred on the subduction interface, which can be used as a

check against other depth estimates produced at the NEIC.

DATA SELECTION AND FILTERING

SUBDUCTION Z0NE CONSTRAINT EXAMPLE - KAMCHATKA

Most Likely Plane Geometry Probability
Maximum Likelihood

******************************************

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

0 20 40 60
Dip (°)

Least Squares

® Original EQ Hypocenter
i\{ Most Likely EQ Hypo.

&
=
= &) CMTs @ EHB Loc
fd
Q @ CMTs @ PDE Loc
- EQ Depth PDFs

B Bathymetry at Trench
-60 ymetry

€ Active Seis. Data
Background Seismicity:

(earthquake d

ata only):

-80 O EHB Locs (before plane)
@ EHB Locs (behind plane)

@ Unweighted

Distance Perpendicular to Average CMT Strike (km)

Special thanks to Katie Keranen, Steve Kirby and Dave Scholl and USGS Menlo Park for active source data and interpretation.

DIP DISCREPANCIES - INTERFACE DIP VS. CMT DIP

At the majority of locations we have analyzed for subduction interface geometry, a comparison between the dip of
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IMPLICATIONS FOR FINITE FAULT MODELING

Modifying the plane on which we compute our finite fault inversions may have significant implications
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geometry rather than one or more planar inter-
faces. Such a step facilitates finite fault models
that more accurately model slip on the
undulating subduction interface.

the earthquake data were used to invert for the most likely planar geometry. Polynomial fits include local data if
available.

D: The remaining region of events is shaded here in orange, encompassing a rectangular region about the reference
profile, between planes dipping at angles of 5° and 60°. For those events selected, we construct Normal Distribution
Probability Density Functions about their reported depth, whose variance is based on reported depth error (EHB), or
depth uncertainty w.r.t. the EHB catalog (NEIC & gCMT). All events are also weighted by magnitude, with larger
events receiving higher weighting.

In the upper cross-section panel, interface geometry is calculated using the selected events and their respective
PDFs. Selected events are shown by mechanisms from the gCMT catalog; yellow at EHB locations, and orange
at NEIC PDE locations. Background seismicity is shown with gray circles; these events are either too small to
have CMT solutions, or did not match the filtering criteria.

What causes this scatter/bias? Is the bias real?

- Uncertainties/errors in CMT inversions (e.g. moment vs. dip trade-off)?

- Bias in CMT solutions caused by the use of 1D velocity models?

- Some bias can be accounted for by slab-rollover; i.e. non-planar geometries. BUT...some bias and significant scat-
ter still remains in polynomial fit comparison.

Such 3D surfaces will form the basis of SLAB1.0,
a global model of the interface geometry of
subduction zones. This collaborative project is
currently underway between the NEIC and
researchers at USGS Menlo Park.

The lower panel shows a comparison between the dip of the best-fitting interface (planar and polynomial fits) with
the individual dips of CMT mechanisms along the section. In general, the dip of the shallow plane in the best-
fitting double couple of the CMT solution is steeper than is the actual subduction interface.

The dip of the subduction zone is computed in a direction perpendicular to the average strike of selected events by
fitting an inclined plane through these PDFs following a maximum likelihood approach. We calculate the probability
of the plane dipping at angles ranging from 5°-600°.

- REAL SIGNAL? e.g. evidence for (small) ruptures on structures close to and at (generally) higher angles than the
main thrust interface?




